Programming Models for Blue Gene/L: Charm++, AMPI and Applications

Laxmikant (Sanjay) Kale
Parallel Programming Laboratory
Dept. of Computer Science
University of Illinois at Urbana Champaign
http://charm.cs.uiuc.edu

Acknowlwdgements

- Graduate students including:
 - Gengbin Zheng
 - Orion Lawlor
 - Milind Bhandarkar
 - Arun Singla
 - Josh Unger
 - Terry Wilmarth
 - Sameer Kumar

- Recent Funding:
 - NSF (NGS: Frederica Darema)
 - DOE (ASCI : Rocket Center)
 - NIH (Molecular Dynamics)

Outline

- The virtualization model
 - Charm++ and AMPI
 - Virtualization: a silver bullet
- BG/L Program Development environment
 - Emulation setup
 - Simulation and Performance Prediction
- Applications using BG/L
 - Scaling Issues
 - Example: Molecular Dynamics
- Ongoing research

Technical Approach

• Seek optimal division of labor between "system" and programmer:

Decomposition done by programmer, everything else automated

Object-based Decomposition

- Basic Idea:
 - Divide the computation into a large number of pieces
 - Independent of number of processors
 - Typically larger than number of processors
 - Let the <u>system</u> map objects to processors
- Old idea? G. Fox Book ('86?), DRMS (IBM), ...
- Our approach is "virtualization++"
 - -Language and runtime support for virtualization
 - -Exploitation of virtualization to the hilt

Virtualization: Object-based Parallelization

User is only concerned with interaction between objects (VPs)

Realizations: Charm++

- Charm++
 - Parallel C++ with Data Driven Objects (Chares)
 - Asynchronous method invocation
 - Prioritized scheduling
 - Object Arrays
 - Object Groups:
 - Information sharing abstractions: readonly, tables,...
 - Mature, robust, portable (http://charm.cs.uiuc.edu)

Object Arrays

- A collection of data-driven objects
 - With a single global name for the collection
 - Each member addressed by an index
 - [sparse] 1D, 2D, 3D, tree, string, ...
 - Mapping of element objects to procS handled by the system

Object Arrays

- A collection of data-driven objects
 - With a single global name for the collection
 - Each member addressed by an index
 - [sparse] 1D, 2D, 3D, tree, string, ...
 - Mapping of element objects to procS handled by the system

Object Arrays

- A collection of data-driven objects
 - With a single global name for the collection
 - Each member addressed by an index
 - [sparse] 1D, 2D, 3D, tree, string, ...
 - Mapping of element objects to procS handled by the system

Comparison with MPI

- Advantage: Charm++
 - Modules/Abstractions are centered on application data structures,
 - Not processors
 - Several other...
- Advantage: MPI
 - Highly popular, widely available, industry standard
 - "Anthropomorphic" view of processor
 - Many developers find this intuitive
- But mostly:
 - There is no hope of weaning people away from MPI
 - There is no need to choose between them!

Adaptive MPI

- A migration path for legacy MPI codes
- AMPI = MPI + Virtualization
- Uses Charm++ object arrays and *migratable* threads
- Minimal modifications to convert existing MPI programs
 - Automated via AMPizer
 - Based on Polaris Compiler Framework
- Bindings for
 - C, C++, and Fortran90

AMPI:

AMPI:

7 MPI "processes"

Implemented as virtual processors (user-level migratable threads)

Real Processors

II: Benefits of Virtualization

- Better Software Engineering
- Message Driven Execution
- Flexible and dynamic mapping to processors
- Principle of Persistence:
 - Enables Runtime Optimizations
 - Automatic Dynamic Load Balancing
 - Communication Optimizations
 - Other Runtime Optimizations

Modularization

- Logical Units decoupled from "Number of processors"
 - E.G. Oct tree nodes for particle data
 - No artificial restriction on the number of processors
 - Cube of power of 2
- Modularity:
 - Software engineering: cohesion and coupling
 - MPI's "are on the same processor" is a bad coupling principle
 - Objects liberate you from that:
 - E.G. Solid and fluid moldules in a rocket simulation

Rocket Simulation

- Large Collaboration headed Mike Heath
 - DOE supported ASCI center
- Challenge:
 - Multi-component code, with modules from independent researchers
 - MPI was common base
- AMPI: new wine in old bottle
 - Easier to convert
 - Can still run original codes on MPI, unchanged

Rocket simulation via virtual processors

AMPI and Roc*: Communication

Message Driven Execution

Virtualization leads to Message Driven Execution

Which leads to Automatic Adaptive overlap of computation and communication

Adaptive Overlap via Data-driven Objects

• Problem:

- Processors wait for too long at "receive" statements
- Routine communication optimizations in MPI
 - Move sends up and receives down
 - Sometimes. Use irecvs, but be careful
- With Data-driven objects
 - Adaptive overlap of computation and communication
 - No object or threads holds up the processor
 - No need to guess which is likely to arrive first

Adaptive overlap and modules

SPMD and Message-Driven Modules

(From A. Gursoy, Simplified expression of message-driven programs and quantification of their impact on performance, Ph.D Thesis, Apr 1994.)

Handling OS Jitter via MDE

- MDE encourages asynchrony
 - Asynchronous reductions, for example
 - Only data dependence should force synchronization
- One benefit:
 - Consider an algorithm with N steps
 - Each step has different load balance: Tij
 - Loose dependence between steps
 - (on neighbors, for example)
 - Sum-of-max (MPI) vs max-of-sum (MDE)
- OS Jitter:
 - Causes random processors to add delays in each step
 - Handled Automatically by MDE

Virtualization/MDE leads to predictability

• Ability to predict:

- Which data is going to be needed and
- Which code will execute
- Based on the ready queue of object method invocations

BlueGene/L

• So, we can:

- Prefetch data accurately
- Prefetch code if needed
- Out-of-core execution
- Caches vs controllable SRAM

Salivating at the shared SRAM in BG/L

Flexible Dynamic Mapping to Processors

- The system can migrate objects between processors
 - Vacate processor used by a parallel program
 - Dealing with extraneous loads on shared workstations
 - Shrink and Expand the set of processors used by an app
 - Shrink from 1000 to 900 procs. Later expand to 1200.
 - Adaptive job scheduling for better System utilization
 - Adapt to speed difference between processors
 - E.g. Cluster with 500 MHz and 1 Ghz processors
- Automatic checkpointing
 - Checkpointing = migrate to disk!
 - Restart on a different number of processors

Principle of Persistence

- Once the application is expressed in terms of interacting objects:
 - Object communication patterns and computational loads tend to persist over time
 - In spite of dynamic behavior
 - Abrupt and large, but infrequent changes (eg:AMR)
 - Slow and small changes (eg: particle migration)
- Parallel analog of principle of locality
 - Heuristics, that holds for most CSE applications
 - Learning / adaptive algorithms
 - Adaptive Communication libraries
 - Measurement based load balancing

Measurement Based Load Balancing

- Based on Principle of persistence
- Runtime instrumentation
 - Measures communication volume and computation time
- Measurement based load balancers
 - Use the instrumented data-base periodically to make new decisions
 - Many alternative strategies can use the database
 - Centralized vs distributed
 - Greedy improvements vs complete reassignments
 - Taking communication into account
 - Taking dependences into account (More complex)

Load balancer in action

Automatic Load Balancing in Crack Propagation

Optimizing for Communication Patterns

- The parallel-objects Runtime System can *observe*, *instrument*, *and measure* communication patterns
 - Communication is from/to objects, not processors
 - Load balancers use this to optimize object placement
 - Communication libraries can optimize
 - By substituting most suitable algorithm for each operation
 - Learning at runtime
 - E.g. Each to all individualized sends
 - Performance depends on many runtime characteristics
 - Library switches between different algorithms

V. Krishnan, MS Thesis, 1996

"Overhead" of Virtualization

Isn't there significant overhead of virtualization?

No! Not in most cases.

Using Charm++/AMPI for BG/L

- How to develop any programming environment for a machine that isn't built yet
- Blue Gene/C emulator using charm++
 - Completed last year
 - Emulation runs on machines with hundreds of "normal" processors
- Recently retargeted and tested for BG/L
- Charm++ on Blue Gene Emulator

Structure of the Emulators

Emulation on a Parallel Machine

BlueGene/L

Emulation efficiency

- How much time does it take to run an emulation?
 - 8 Million processors being emulated on 100
 - In addition, lower cache performance
 - Lots of tiny messages
- On a Linux cluster, and Lemieux:
 - Emulation shows good speedup

Emulation efficiency

Emulation Time on Linux Cluster

1000 BG/C nodes (10x10x10)

Each with 200 threads

(total of 200,000 user-level threads)

But Data is preliminary, based on one simulation

Emulator to Simulator

- Step 1: Coarse grained simulation
 - Simulation: performance prediction capability
 - Models contention for processor/thread
 - Also models communication delay based on distance
 - Doesn't model memory access on chip, or network
 - How to do this in spite of out-of-order message delivery?
 - Rely on determinism of Charm++ programs
 - Time stamped messages and threads
 - Parallel time-stamp correction algorithm

• Basic execution:

- Timestamped messages
- Correction needed when:
 - A message arrives with an earlier timestamp than other messages "processed" already

• Determinism:

- Messages to Handlers or simple objects
- MPI style threads, without wildcard or irecvs
- Charm++ with dependence expressed via structured dagger

Performance of correction Algorithm

- Without correction
 - 15 seconds to emulate a 18msec timstep
 - 10x10x10 nodes with k threads each (200?)
- With correction
 - Version 1: 42 minutes per step!
 - Version 2:
 - "Chase" and correct messages still in queues
 - Optimize search for messages in the log data
 - Currently at 30 secs per step
- Alternative algorithm:
 - Trace-driven simulation

Emulator to Simulator

- Step 2: Add fine grained procesor simulation
 - Sarita Adve: RSIM based simulation of a node
 - SMP node simulation: completed
 - Also: simulation of interconnection network
 - Millions of thread units/caches to simulate in detail?
- Step 3: Hybrid simulation
 - Instead: use detailed simulation to build model
 - Drive coarse simulation using model behavior
 - Further help from compiler and RTS

Modeling layers

Applications

Libraries/RTS

For each: need a detailed simulation and a simpler (e.g. table-driven) "model"

Proc. Architecture

Network model

And methods for combining them

Applications on the current system

- Using BG Charm++
- LeanMD:
 - Research quality Molecular Dyanmics
 - Version 0: only electrostatics + van der Vaal
- Simple AMR kernel
 - Adaptive tree to generate millions of objects
 - Each holding a 3D array
 - Communication with "neighbors"
 - Tree makes it harder to find nbrs, but Charm makes it easy

Performance Issues and Techniques

- Scaling to 64K/128K processors
 - Communication
 - Bandwidth use more important than processor overhead
 - Locality:
 - Global Synchronizations
 - Costly, but not because it takes longer
 - Rather, small "jitters" have a large impact
 - Sum of Max vs Max of Sum
 - Load imbalance important, but so is grainsize
 - Critical paths

Parallelization Example: Molecular Dynamics in NAMD

- Collection of [charged] atoms, with bonds
 - Newtonian mechanics
 - Thousands of atoms (1,000 500,000)
 - 1 femtosecond time-step, millions needed!
- At each time-step
 - Calculate forces on each atom
 - Bonds:
 - Non-bonded: electrostatic and van der Waal's
 - Calculate velocities and advance positions
 - Multiple Time Stepping : PME (3D FFT) every 4 steps

Collaboration with K. Schulten, R. Skeel, and coworkers

Traditional Approaches

- Replicated Data:
 - All atom coordinates stored on each processor
 - Communication/Computation ratio: P log P
- Partition the Atoms array across processors
 - Nearby atoms may not be on the same processor
 - C/C ratio: O(P)
- Distribute force matrix to processors
 - Matrix is sparse, non uniform,
 - C/C Ratio: sqrt(P)

August 14, 2002 BlueGene/L

Spatial Decomposition

•C/C ratio: O(1)

•However:

Load Imbalance

•Limited Parallelism

Object Based Parallelization for MD:

Force Decomposition + Spatial Deomp.

- •Now, we have many objects to load balance:
 - -Each diamond can be assigned to any proc.
 - Number of diamonds(3D):
 - –14·Number of Patches

Bond Forces

- Multiple types of forces:
 - Bonds(2), Angles(3), Dihedrals (4), ...
 - Luckily, each involves atoms in neighboring patches only
- Straightforward implementation:
 - Send message to all neighbors,
 - receive forces from them
 - 26*2 messages per patch!
- Instead, we do:
 - Send to (7) upstream nbrs
 - Each force calculated at one patch

NAMD performance using virtualization

- Written in Charm++
- Uses measurement based load balancing
- Object level performance feedback
 - using "projections" tool for Charm++
 - Identifies problems at source level easily
 - Almost suggests fixes
- Attained unprecedented performance

Relative Scaling

Performance: NAMD on Lemieux

		Time (ms)			Speedup			GFLOPS		
Procs	Per Node	Cut	PME	MTS	Cut	PME	MTS	Cut	PME	MTS
1	1	24890	29490	28080	1	1	1	0.494	0.434	0.48
128	4	207.4	249.3	234.6	119	118	119	59	51	57
256	4	105.5	135.5	121.9	236	217	230	116	94	110
512	4	55.4	72.9	63.8	448	404	440	221	175	211
510	3	54.8	69.5	63	454	424	445	224	184	213
1024	4	33.4	45.1	36.1	745	653	778	368	283	373
1023	3	29.8	38.7	33.9	835	762	829	412	331	397
1536	3	21.2	28.2	24.7	1175	1047	1137	580	454	545
1800	3	18.6	25.8	22.3	1340	1141	1261	661	495	605
2250	3	15.6	23.5	18.4	(1599)	1256	1527	789	545	733

ATPase: 320,000+ atoms including water

LeanMD for BG/L

- Need many more objects:
 - Generalize hybrid decomposition scheme
 - 1-away to k-away

58

Emulation Speedup on Lemieux

32000 Node BG/L running LeanMD.

Emulation time per timestep

Ongoing Research

- Load balancing
 - Charm framework allows distributed and centralized
 - Recent years, we focused on centralized
 - Still ok for 3000 processors for NAMD
 - Reverting back to older work on distributed balancing
 - Need to handle locality of communication
 - Topology sensitive placement
 - Need to work with global information
 - Approx global info
 - Incomplete global info (only "neighborhood")
 - Achieving global effects by local action...

Communication Optimizations

- Identify distinct communication patterns
 - Study different parallel algorithms for each
 - Conditions under which an algorithm is suitable
 - Incorporate algorithms and runtime monitoring into dynamic libraries
- Fault Tolerance
 - Much easier at object level: TMR, efficient variations
 - However, checkpointing used to be such an efficient alternative (low forward-path cost)
 - Resurrect past research

Multiparadigm programming

- Idea
- Converse
- Paradigms aimed at:
 - Charm++, MPI, AMPI, CRL,
 - Frameworks: FEM, AMR, Multiblock, particle
 - Other's paradigms:
 - HPF,
 - Virtualized versions of GA, UPC??,...

Summary

- Virtualization as a magic bullet: Charm/AMPI
 - Flexible and dynamic mapping to processors
 - Message driven execution:
 - Adaptive overlap, modularity, predictability
 - Principle of persistence
 - Measurement based load balancing,
 - Adaptive communication libraries
- BG/L Emulator and Simulator
 - Can run 128k proc. Program on current parallel m/cs
 - Charm++ and LeanMD ported to BG/L
 - Ongoing research in:
 - Scalable load balancing, communication optimizations,
 - Multiparadigm programming

More info:

http://charm.cs.uiuc.edu